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Abstract. Final state radiation (FSR) in pion pair production cannot be calculated reliably because of the
composite structure of the pions. However, FSR corrections have to be taken into account for a precise
evaluation of the hadronic contribution to g − 2 of the muon. The role of FSR in both energy scan and
radiative return experiments is discussed. It is shown how FSR influences the pion form factor extraction
from experimental data and, as a consequence, the evaluation of ahad

µ . In fact the O(α) FSR corrections
should be included to reach the precision we are aiming at. We argue that for an extraction of the desired
FSR-inclusive cross section σ

(γ)
had a photon-inclusive scan measurement of the “e+e− → π+π− + photons”

cross section is needed. For exclusive scan and radiative return measurements in contrast we have to rely
on ad hoc FSR models if we want to obtain either σ

(γ)
had or the FSR-exclusive cross section σ

(0)
had. We thus

advocate to consider seriously precise photon-inclusive energy scan measurements at present and future
low energy e+e−-facilities. Then together with radiative return measurements from DAΦNE and BABAR
and forthcoming scan measurements at VEPP-2000 we have a good chance to substantially improve the
evaluation of ahad

µ in the future.

1 Introduction

Photon vacuum polarization effects are sizable and there-
fore play an important role in electroweak precision
physics. Because of the strong interactions between quarks
and gluons the contributions of the low energy hadrons
cannot be calculated by perturbative QCD. However, they
may be obtained via a dispersion integral over the exper-
imental e+e− annihilation data. A precise evaluation of
hadronic effects in quantities like the running fine struc-
ture constant α(s) and of the muon anomalous magnetic
moment aµ thus depends directly on the precision of low
energy “e+e− → hadrons” cross sections σhad [1–3]. Fur-
ther theoretical efforts may help to some extent to re-
duce the theoretical uncertainties of these quantities [4].
However, new measurements of σhad are indispensable for
achieving substantial progress. Indeed, remarkable im-
provements have been achieved in recent years by the
CMD-2 Collaboration [5] at Novosibirsk and the BES-II
Collaboration [6] at Beijing. New results are expected soon
from radiative return experiments by KLOE [7,8] at the
Φ-factory DAΦNE at Frascati and from the B-factory at
SLAC with BABAR [9].

The muon g − 2 experiment at Brookhaven now has
reached the level of 0.7 ppm in precision [10,11] for a mea-
surement of aµ and depending on which evaluation of ahad

µ

is adopted [3] reveals a deviation from the standard model
prediction which could be as large as 3 standard devia-
tions. Since the main source of uncertainty of the SM pre-

diction arises from the hadronic contributions, a careful
reconsideration of the determination of ahad

µ is mandatory.
In fact existing low energy “e+e− → π+π−” data are in-
consistent with the corresponding I = 1 part obtained via
CVC (conserved iso-vector current) from hadronic τ -decay
spectra [3,12]. This is a problem which most likely can
only be resolved by new experiments. Needless to say that
the experimental inconsistencies also reduce our possibil-
ities to obtain a more precise determination of ahad

µ and
hence to draw conclusions about possible “new physics”
which also would contribute to aµ.

Experiments that measure σhad do this either via an
energy scan (2mπ ≤ s1/2 ≤ Emax) or they measure the
invariant mass distribution of the hadronic final states
dσhad/ds′ (s′ ≤ s) at meson factories running at fixed
s, using the radiative return due to the emission of hard
initial state photons. From dσhad/ds′ the cross section
σhad(s′) can here be extracted by factoring out the photon
radiation1.

1 As has been pointed out in [13] already, the radiative re-
turn “mechanism” at leading order has the nice property that
the usual convolution integral, relating the observed cross sec-
tion (which includes photon radiation effects) to the physical
cross section of actual interest, appears de-convoluted (photon
radiation acts as a spectral analyzer) such that instead of fac-
torization under convolution integrals one has point by point
factorization. Higher order effects which give rise to multiple
convolution integrals of course spoil this simple picture since
by taking one derivative we get rid of one integration only
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At increasing precision it becomes more and more
difficult and challenging to extract the relevant “pseudo-
observable” quantities with adequate precision. By
“pseudo-observable” one understands quantities obtained
from raw experimental data only via some theoretical in-
put. For example, one has to unfold the raw data from
photon radiation effects, where the initial state radiation
(ISR) is universal to all e+e− annihilation processes, while
the final state radiation (FSR) and the initial–final state
interference (IFS) are process specific. The “pseudo-
observable” we are interested in is the “hadronic blob”
which corresponds to the imaginary part of the correlator
of two hadronic electromagnetic currents: the one-photon
irreducible contributions to the photon vacuum polariza-
tion (see [13] and references therein). Here we concen-
trate on low energy π pair production, a relatively sim-
ple hadron production channel which is dominating the
hadronic contribution to the muon g − 2.

For both the scan and the radiative return method we
are facing three major sources of uncertainty affecting the
extraction of σππ: the experimental error, the theoreti-
cal error due to neglecting higher order QED corrections
and finally the uncertainty related to non-perturbative ef-
fects related to photon radiation from the final hadronic
state. Currently, great efforts are made to reduce the ex-
perimental error below the 1 per cent level [5,7–9]. QED
corrections concerning low energy pion pair production
have been considered e.g. in [13–16]. In the present article
we will focus on the last of the mentioned error sources,
the model error related to photons radiated from the final
hadronic state. Here the problem is that the radiation of
photons by the pions is poorly understood theoretically.
Since perturbative QCD breaks down at low energies it
is not possible to treat the final state pions in terms of
their constituent quarks. On the other hand hard pho-
tons participating in the scattering process do probe the
pion sub-structure. Treating pions as point-like scalar par-
ticles by simply applying scalar QED (sQED) is therefore
also not a solution to the problem. What makes things
even more complicated is the fact that we have to deal
with non-perturbative QCD effects like intermediate ρ or
ω resonances and photon radiation from such a hadronic
state cannot be treated in a straightforward way. How-
ever, this contribution of real photon emission can be ex-
pected to be less important than the radiation from the
final state pions. This is because the net charge of the in-
termediate hadronic state is zero and in addition the de
Broglie wavelength of the dominant ρ and ω resonances
is relatively small in respect to the typical wavelength of
the radiated photons. Only sufficiently hard photons are
able to probe the sub-structure of a hadronic composite
state. The pions on the other hand are charged and have a
much longer de Broglie wavelength. Unfortunately a simi-
lar argument does not help for the virtual corrections since
virtual hard photons are always included and also cannot
be eliminated by cutting out the “trouble-making” part
of the phase space as it is possible for real photons. As a
consequence their magnitude is not known and they can-

not be subtracted from the hadronic final state without
relying on specific models like sQED.

As mentioned above the quantity of interest is the cor-
relator of the hadronic component of two electromagnetic
currents including strong as well as electroweak correc-
tions. From the latter only the photonic corrections are
sizable. They correspond to the FSR correction in the
hadron production processes [17,18]. Since these correc-
tions cannot be calculated reliably, the aim is to measure,
if possible, the hadronic cross section σ

(γ)
had that is dressed

by final state photons. We would obtain in this way di-
rectly the quantity to be inserted into the dispersion in-
tegrals for the hadronic contribution to the running fine
structure constant α(s) and to the muon anomalous mag-
netic moment aµ, respectively, at the next to leading level
of accuracy.

Including FSR means to include photonic corrections
to the irreducible hadronic photon self-energy. We thus
address the question whether we can circumvent the FSR
problem by performing an inclusive measurement, i.e., un-
dress the data from ISR only. The question has been dis-
cussed already in a previous paper for the radiative return
scenario [13]. The result was that in this case an inclusive
measurement does not yield the quantity of interest at
sufficient precision. In other words, without substantial
loss of precision one cannot avoid the necessity to undress
from all photon radiation, including the complete treat-
ment of FSR. Lacking a precise theoretical understand-
ing of photon radiation by hadrons, however, one has to
rely on model assumptions like “generalized sQED” for
the pions (treating pions as point-like modulo a form fac-
tor) to extract the undressed (FSR-exclusive) cross section
σ

(0)
had(s) from the data in a first step. In order to obtain

the FSR-inclusive cross section σ
(γ)
had(s) one has to add the

appropriate FSR contribution “by hand” at the end.
On the other hand for completely inclusive scan mea-

surements we can use the fact that ISR and FSR factorize
to “subtract” ISR from the observed inclusive total cross
section σobs, leaving, up to O(α2) IFS contributions, the
desired FSR-inclusive cross section σ

(γ)
had(s). As we will see

for pion pair production such a “subtraction” of ISR is also
possible with excellent precision for realistic cuts on the
pion angles provided they are chosen such that they break
the ISR ⊗ FSR factorization only slightly. The inclusive
measurement requires a high quality detector with high
acceptance and good separation of π0 versus γ (π+π−π0

background).
At CMD-2 [5] so far a different strategy has been used

which we will call the exclusive scan measurement. Here
an event selection is applied such that only soft real pho-
tons are included which then can be corrected away. While
there are no problems with real hard photons in this case
one still has the problem that the virtual photon contri-
butions from the loops include hard photon effects. The
virtual contributions must be subtracted and one has to
apply the Bloch–Nordsieck construction as well in order
to get an infrared finite cross section. Because the effective
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theory applied (generalized sQED) is renormalizable, one
obtains infrared (IR) and ultraviolet (UV) finite results.

Note that existing data at present do not allow us to
determine σ

(γ)
had(s) as required for a precise determination

of its contribution to ahad
µ . Modeling FSR by sQED we

may estimate the size of the effect we have in mind: it is
given at leading perturbative order by δγahad

µ = (38.6 ±
1.0)×10−11. This has to be confronted with the final preci-
sion δexpahad

µ ∼ 40×10−11 expected from the Brookhaven
muon g − 2 experiment.

Before settling this 1σ (in terms of the expected final
experimental precision) effect, it is urgent to clarify the
origin of the 3 times larger discrepancy between e+e− →
π+π− data and the corresponding data obtained via CVC
from τ spectral functions (in the energy range just above
the ρ resonance), and the present unclear status of the
ρ mass and width [19]. This issue can certainly be set-
tled by the radiative return experiments with KLOE [8] at
LNF/Frascati and with BABAR [9] at SLAC2. However,
a new energy scan experiment, which is anyway manda-
tory for a clean measurement of the FSR-inclusive cross
section, could also help to clarify the origin of the ob-
served deviations. In addition, as we shall argue below, in
radiative return measurements in order to get rid of the
model-dependent FSR contribution, at least one of the
following conditions has to be fulfilled:

(i) σππ(s′ < s) � σππ(s) (true especially for the ρ reso-
nance region);
(ii) s′ � s (soft photon region);
(iii) suppression of FSR by kinematic cuts. As we will see,
at φ-factories model dependence becomes an insurmount-
able problem at low energies below about 500 MeV where
we have to deal with large contributions of hard FSR pho-
tons which cannot be suppressed by cuts.

The above remarks together with the results presented
in this paper strongly suggest that it would be desirable
to revitalize the idea to perform an energy scan at the
DAΦNE machine at Frascati [20] in a second step after
running as a Φ-factory.

In the next section we discuss the model error of pion
form factor extraction connected to the radiation of pho-
tons from hadronic final states in inclusive and exclu-
sive scan scenarios. In addition we analyze to what ex-
tent kinematic cuts on the pion angles change the pic-
ture and, for the inclusive scan scenario, consider the im-
pact of the model uncertainty on the determination of
ahad

µ . Section 3 is devoted to the model uncertainty of
extracting the pion form factor |Fπ(s′)|2 for fixed s in ra-
diative return experiments. We also address the question

2 We should mention that another very problematic energy
region exists where experimental data are very poor or even
controversial and which is important for the precise evaluation
of ahad

µ : the energy range 1.4 to 2.0 GeV (between the upper
limit of the VEPP-2M machine at Novosibirsk and the lower
limit of the BEPC machine at Beijing). Radiative return mea-
surements with BABAR and results expected from VEPP-2000
(upgraded VEPP-2M) will substantially improve results in this
range

if the FSR contribution and its related model error can
be estimated from a measurement of the pion forward–
backward asymmetry AFB. In Appendix A we derive a
general, model-independent formula for the inclusive cross
section σ(e+e− → γ∗ → X + photons), where ISR and
FSR are treated in a factorized form, X being an arbi-
trary non-photonic final state. In Appendix B some of the
used formulas connected to FSR within sQED or fermionic
QED (fQED) are collected.

2 Model errors for inclusive and exclusive
measurements in scan experiments

2.1 Inclusive scenario

We first present a case study of “e+e− → π+π− + nγ”
(n = 0, 1, 2, . . .). Experimentally on an event by event ba-
sis it is not possible to distinguish a final state from an
initial state photon. In an inclusive measurement events
with any number of (initial and/or final state) photons are
counted. The major question will be to what extent and at
what accuracy we may evaluate FSR-inclusive cross sec-
tions from the experimental data. We first consider the
measurement of the FSR-inclusive cross section3 σ(γ)(s)
in energy scan experiments.

Suppose for the moment that we would be able to cal-
culate photon radiation from pions. Then we would have
two possibilities:
(1) determine the undressed cross section σ(0)(s) by un-
folding the observed cross section from all photon radia-
tion and add the FSR as calculated by perturbation theory
with desired accuracy, which yields σ(γ);
(2) determine an FSR-inclusive cross section by unfolding
only the calculated ISR from the observed cross section,
which yields σ̂(γ)(s).

The question then is: to what accuracy does σ̂(γ)(s) ap-
proximate σ(γ)(s)? Since, actually, we do not know how to
calculate photon radiation from pions in a model-indepen-
dent way only the second approach is able to give a model-
independent answer; however, then we do not know how
well σ̂(γ)(s) approximates the quantity of interest σ(γ)(s).
What we will do in this case is make a “guesstimate” of
the quality of the approximation by modeling FSR by gen-
eralized sQED.

For the error estimate the following factorization the-
orem is crucial: Neglecting the IFS contribution, being of
O(α2) due to charge conjugation invariance, the inclusive
total cross section σobs(s) may be written in a factorized
form,

σobs(s) =
∫

dsVσ(γ)(sV)ρincl
ini (s, sV) + O(α2)IFS,

(2.1)

which means that FSR and ISR can be treated indepen-
dently from each other. Details are given in Appendix A

3 In the following we drop the labels “had” or “ππ” for cross
sections like σ(0) and σ(γ)
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[see (A.21) and (A.28)]. It is worth to stress that the pow-
erful identity (2.1) is not easily recognizable to fixed per-
turbative order. Note that (2.1) is quite general once IFS
is neglected. It is based on the fact that we have a neutral
current process for which we can apply a separation into
Lorentz covariant and individually gauge invariant initial
and final state contributions. Qualitatively the result may
be understood as follows: by the fact that at low ener-
gies the single virtual photon exchange (1/s-enhancement)
highly dominates the “e+e− → π+π− + nγ” cross section
and due to the suppression of the IFS (see below) it makes
sense to consider the process in an approximation of an
s-channel single photon exchange (i.e. diagrams which fac-
torize into two disconnected parts upon cutting the pho-
ton line). This virtual photon then carries the invariant
mass s

1/2
V and the above convolution is exact up to the in-

dicated missing IFS effects. We would like to remind the
reader that the representation of the ππ-production cross
section in terms of the pion form factor4

σ(0)(s) = |F (0)
π (s)|2σ0,point(s), (2.2)

with [βπ = (1 − 4m2
π/s)1/2 is the pion velocity]

σ0,point(s) =
π

3
α2β3

π

s
,

also makes sense strictly only for the one-photon exchange
approximation5. In this approximation sV can be neatly
identified with s in |Fπ(s)|2, in spite of the fact that sV,
as the squared invariant mass of a virtual state, is not
an observable. Thus in (2.1) sV is only a formal (un-
physical) integration variable where the boundaries are
physical observables: 4m2

π ≤ sV ≤ s. Nevertheless, we
can always fit the pseudo-observable σ(γ)(sV) to the ob-
served data σobs(s) by using (2.1) and thereby determine
σ(γ)(sV). The accuracy with which this can be achieved,
up to IFS contributions, is limited by our knowledge of the
initial state radiator function ρincl

ini (s, sV) only. The latter
can be calculated without any model dependence within
perturbative QED (see e.g. [21]). Since IFS effects are of
O(α2), the model dependence for the extraction of the
FSR-inclusive cross section is determined by an (as yet
unknown) O(α2) IFS contribution6. What is very impor-
tant is that IFS interference does not include contributions
from leading logarithms of the kind log(s/m2

e). We may
estimate the O(α2) effect to be at the per mill level.

4 Note that σ(0)(s) and equivalently |F (0)
π (s)|2 are not mea-

surable quantities, as we shall discuss below. They are useful,
theoretically motivated concepts defined in a world where the
electroweak interactions are switched off. In reality we cannot
switch off QED effects and this is part of the problem we are
dealing with in this paper. If one could calculate |F (0)

π (s)|2
for time-like s non-perturbatively in lattice QCD, this is the
quantity what one would take from lattice QCD

5 Since in (2.2) F
(0)
π (s) does not depend on the pion pro-

duction angle a similar formula (B.18) is valid for the case of
angular cuts with the same function F

(0)
π (s)

6 The O(α2) IFS is complete for the real photon emission.
However, some virtual contributions are not yet calculated

As we have already stressed, our “master formula”
(2.1) cannot be directly applied to a real experiment with
some cuts and/or detector inefficiencies (the leading un-
certainties are due to the need of extrapolation to the blind
zones of the measurement). In a real experiment the influ-
ence of these effects will be taken into account using a re-
alistic Monte Carlo event generator which features a high
quality ISR matrix element and some modeling of FSR.
Let us focus therefore on a situation where angular cuts
are present. Then, ISR and FSR phase space integrations
cannot be disentangled as it is possible without cuts [see
(A.11)] and ISR ⊗ FSR factorization breaks down at the
O(α) level. As a consequence, to subtract only ISR from
the data we have to rely on specific FSR models. To be
able to extract σ(γ)(sV) without significant model depen-
dence the condition that the applied cuts break ISR⊗FSR
factorization only slightly has to be fulfilled. Here we will
investigate the breaking of ISR ⊗ FSR factorization by
some semi-realistic C-symmetric cuts, Θπ± ≥ ΘM

π , Θπ±
being the laboratory angle between the pion momenta and
the beam axis, treating FSR by sQED. For such cuts we
then can write the observed cross section as (for details
see Appendix B and [13]; Λ is the soft photon energy sep-
arating soft from hard photons)

σcut
obs(s) = σ

(γ)
cut(s) [1 + δini(s, Λ)] (2.3)

+
∫ s−2

√
sΛ

4m2
π

dsVσ
(γ)
cut(sV)ρcut

ini (s, sV) − δscan
cut (s),

with δini(s, Λ) corresponding to the soft plus virtual and
ρcut
ini (s, sV) corresponding to hard photon initial state QED

corrections. The O(α) ISR ⊗ FSR factorization breaking
term δscan

cut (s) accounts for the missing pion events which
cannot be seen in the experiment:

δscan
cut (s) = σ

(0)
cut(s)

α

π
{η(s) − ηcut(s)} + O(α2). (2.4)

δscan
cut vanishes for the case without cuts (restoration of

factorization). Remember that for C-symmetric angular
cuts the O(α) IFS contribution drops out.

In a world with point-like pions we could calculate
δscan
cut (s) perturbatively in sQED, where

η(cut)(s) =
π

α

[
δfin(s, Λ) +

∫ s−2
√

sΛ

4m2
π

ds′ρ(cut)
fin (s, s′)

]
,

(2.5)

with s′ being the square of the invariant mass of the pion
pair and δfin(s, Λ) and ρ

(cut)
fin (s, s′) the corresponding FSR

corrections given in Appendix B. For real world pions we
may estimate this term assuming generalized sQED which
at least treats the soft photon part correctly and for the
rest is a guess. It means that we assume that (2.4) and
(2.5), with η(s) calculated in sQED, still to some approx-
imation account for the effect. What we will actually do
is to consider δscan

cut (s), evaluated as just described, as a
theoretical uncertainty (model error).

Note that (2.3) only contains the measured cross sec-
tion σcut

obs(s), the known initial state correction factors δini
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and ρ
(cut)
ini , and the FSR-inclusive cross section σ

(γ)
cut(s),

which is the quantity to be extracted from the data since
it corresponds to the FSR-inclusive pion form factor via
(B.20).

Whether the approximation σ̂
(γ)
cut(s) obtained via

σcut
obs(s) = σ̂

(γ)
cut(s) [1 + δini(s, Λ)]

+
∫ s−2

√
sΛ

4m2
π

ds′σ̂(γ)
cut(s

′)ρcut
ini (s, s′), (2.6)

after neglecting δscan
cut (s) in (2.3), yields a good approxima-

tion for the FSR-inclusive cross section is subject of the
investigation described in the following.

We first introduce the FSR-inclusive form factor F
(γ)
π (s)

by

|F (γ)
π (s)|2 = |F (0)

π (s)|2
(
1 +

α

π
η(s)

)
+ O(α2), (2.7)

and assume that in some approximation it makes sense to
write formulas like (2.2) also between σ(γ)(s) and F

(γ)
π (s)

and between σ̂(γ)(s) and F̂
(γ)
π (s). Hard photon effects spoil

these assumptions at some level, but this at the moment
is difficult to quantify. So in the following, this will be part
of our model assumption (see below).

To estimate the model dependence for the extraction
of σ

(γ)
cut(s) we first generate a sample σcut

obs(s), using the
pion form factor |F (0)

π (s)|2 as given in [5] and the relations
(2.3)–(2.5) and (B.18)–(B.21). Then we utilize the MI-
NUIT package [22] to obtain |F̂ (γ)

π (s)|2 [which corresponds
to σ̂

(γ)
cut(s)] from the σcut

obs(s) data using (2.6). For the data
fitting we adopt again the Gounaris–Sakurai type param-
eterization of |F (0)

π (s)|2 in the version proposed in [5].
We then estimate the model error by

∆scan
cut (s) =

σ
(γ)
cut(s) − σ̂

(γ)
cut(s)

σ
(γ)
cut(s)

=
|F (γ)

π (s)|2 − |F̂ (γ)
π (s)|2

|F (γ)
π (s)|2

.

(2.8)

The model error for the extraction of |F (γ)
π (s)|2 from

scan data with C-symmetric cuts is shown in Fig. 1. The
detailed shape of the curve depends on the parameteri-
zation of the pion form factor. It can be noticed that the
considered cuts do not lead to large model errors. Even for
the extreme cut of Θπ ≥ 60◦ the model error is still below
half a per cent, for Θπ ≥ 30◦ it is below 1 per mill. In
fact, the observed smallness of the model error is related
to the p-wave-like angular distribution of the outgoing pi-
ons. Figure 2 shows that angular cuts of the pion angle
against the beam axis up to 30◦ decrease the cross section
very little.

In Fig. 3 the impact of the discussed model error on
ahad

µ ,

ahad
µ =

(αmµ

3π

)2
∫ ∞

4m2
π

ds
Rππ(s)K̂(s)

s2 , (2.9)

Fig. 1. Estimated relative model error for the extraction of
the absolute square of the FSR-inclusive pion form factor,
|F (γ)

π (s)|2, as a function of the center-of-mass energy in a
photon-inclusive scan experiments for different C-symmetric
angular cuts on the pion angles. Curve (a30) and curve (a60)
correspond to the cuts Θπ ≥ 30◦ and Θπ ≥ 60◦, respectively

Fig. 2. Observed total cross section for pion pair production
as a function of the center-of-mass energy (s1/2 ≤ 1.02 GeV)
for the considered cut scenarios

is shown. For this we compare the values of ahad
µ when

inserting

Rππ(s) ≡ R(γ)
ππ (s) =

β3
π

4
|F (γ)

π (s)|2 (2.10)

into (2.9) [this value is denoted by a
had(γ)
µ ] with the value

when inserting

Rππ(s) ≡ R̂(γ)
ππ (s) =

β3
π

4
|F̂ (γ)

π (s)|2 (2.11)

[this value is denoted by â
had(γ)
µ ]. Then the model error

of ahad
µ which is plotted in Fig. 3 for the curves (a30) and

(a60) is defined as

∆ahad
µ =

a
had(γ)
µ − â

had(γ)
µ

a
had(γ)
µ

. (2.12)
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Fig. 3. Estimated relative model error in per mill of ahad
µ

(smin < s < M2
Φ) in scan experiments. The curves (a30) and

(a60) correspond to the cases in Fig. 1

Let us recall that the present theoretical error is at the
level of 1.2% per cent.

As a first summary we may say that the direct extrac-
tion of |F̂ (γ)

π (s)|2 in an inclusive scan yields a very good
approximation of |F (γ)

π (s)|2, especially in the low energy
region where the contribution of FSR becomes large.

2.2 Exclusive scenario

Scan measurements in the past attempted to extract the
“bare” cross section σ(0)(s), undressed from photon radi-
ation effects. As already mentioned, the bare cross section
is the object of primary theoretical interest, in principle.
It is the quantity which allows us to extract the pion form
factor which encodes the strong interaction structure of
the pion in a world where the electromagnetic interaction
has been switched off. It is the non-perturbative quan-
tity which one would compute by a simulation in lattice
QCD or investigate by means of general low energy prop-
erties of the strong interactions like chiral perturbation
theory, locality and analyticity [4]. The theoretical con-
cept of disentangling effects from different interactions has
been very successful; however, it has its limitation at some
point. In the phenomenology of low energy hadrons it is in
fact not possible to separate in a model-independent way
QED from QCD effects (at the level of accuracy we are
considering here weak interaction effects are negligible).
This will be discussed in more detail in the next section.
Here, for the moment, we assume that σ(0)(s) is a sensible
pseudo-observable.

Figure 4 shows the relative deviation of the FSR-inclu-
sive pion form factor |F (γ)

π (s)|2 (being the desired quantity
to be inserted into the dispersion integrals) from the un-
dressed pion form factor |F (0)

π (s)|2, as calculated within
sQED [see (B.14), (B.18) and (B.20)]

δRFSR(s) =
σ(γ)(s) − σ(0)(s)

σ(0)(s)

Fig. 4. Importance of FSR in sQED. The curve shows the
difference between the absolute square of the undressed and of
the FSR-inclusive pion form factor [see (2.13)]

=
|F (γ)

π (s)|2 − |F (0)
π (s)|2

|F (0)
π (s)|2

=
α

π
η(s) + O(α2). (2.13)

This quantity can be taken as a measure of the importance
of FSR.

Since the analysis presented so far does not account
for the fact that generalized sQED describes correctly the
soft photon part of the FSR-spectrum only7, we would like
to go further and compare sQED modeling with a second
one which differs from it for hard photons. As in [13] we
compare two different treatments of final state corrections:
once we take for ρfin(s, s′) and δfin(s, Λ) the functions re-
lated to photonic radiation from point-like, scalar pions,
and once we use the corresponding functions for the pho-
tonic radiation from point-like, fermionic pions with the
same charge and mass (see Appendix B). The reason we do
this is that in the soft photon limit the scalar as well as the
fermionic approach yields the same correct result for the
real photon contribution. For hard photons on the other
hand both scenarios are obviously different. This will allow
us to get some feeling in what kinematic regions hard pho-
tons play a substantial role and what model uncertainty
we have to expect.

We thus consider in the following the model depen-
dence of FSR effects, by replacing the integrated final state
corrections for scalar particles, represented by the factor
η(s), by a corresponding factor for a fermionic final state,
which we denote by ηf(s) (see again Appendix B for ex-
plicit formulas). Though both η(s) and ηf(s) diverge when
approaching the pion pair production threshold (Coulomb

7 Note that for s → 4m2
π real FSR is known precisely since

there is only enough phase space for the radiation of soft pho-
tons, and for soft photons the FSR radiation mechanism is
universal for given masses and charges of the final state par-
ticles. Therefore estimating the model uncertainty to be given
by the sQED result appears to be too crude as it overestimates
the model uncertainty in the soft photon region
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Fig. 5. Model estimate of the relative model uncertainty for
the extraction of the absolute square of the FSR-inclusive pion
form factor, |F (γ)

π (s)|2, as a function of the center-of-mass en-
ergy in scan experiments

pole8), their difference in this limit is a small number,
lims→4m2

π
[η(s) − ηf(s)] = 1 (in units α/π)9. As already

mentioned, obviously, the generalized sQED/fQED mod-
eling of FSR obtained by replacing the point-pion form
factor “1” by a form factor function |Fπ(s)|2 of one single
variable s is valid for soft photons only. A method which
will allow us to describe also hard photons in a realistic
manner will be presented in a forthcoming paper.

Our discussion thus motivates the consideration of the
following measure of the model dependence:

∆scan
f (s) =

σ(γ) − σ(γ),f

σ(γ) =
|F (γ)

π (s)|2 − |F (γ),f
π (s)|2

|F (γ)
π (s)|2

=
α

π
[η(s) − ηf(s)] + O(α2). (2.14)

It compares in a ratio |F (γ)
π (s)|2, being the pion form fac-

tor dressed by scalar FSR, with the absolute square of the
pion form factor |F (γ),f

π (s)|2, being dressed by fermionic
FSR, and corresponds to our ignorance of FSR. Figure 5
shows ∆scan

f (s) as a function of energy and suggests an
uncertainty below 0.5% over the whole energy range of
interest.

For the data analysis at the CMD-2 experiment [5]
the event selection was such that only events containing
real low energy photons were taken into account and thus
the pions were approximately back to back. Since for soft
photons the FSR mechanism is known (factorization), the
real photonic corrections together with the universal soft
plus virtual IR terms can be subtracted from the observed
cross section in an essentially model-independent way10.

8 The Coulomb resummation has been considered in [13]
9 At high energies the scalar and fermionic FSR read η(s →

∞) = 3 and ηf(s → ∞) = 3/4
10 Collinear hard photons can be easily separated via the
event shapes

Accordingly, in order to keep the formulas simple, we de-
fine a subtracted cross section σsubtr

obs (s) which does not
depend on the cuts any longer and is obtained from the
experimentally observed exclusive cross section in a theo-
retically well controlled manner.

While real hard photons may be eliminated by appro-
priate cuts, the same cannot be done for the remaining
virtual corrections which include high momentum scales
in loops and hence their treatment is model dependent.
As a consequence the determination of the undressed cross
section σ(0)(s) as well as of the FSR-inclusive cross section
σ(γ)(s) from the given data suffers from model dependence
which is hard to estimate.

Here we will present a model error estimate assum-
ing that the observed cross section can be written as a
product of σ(0)(s) containing all QCD effects (pion form
factor) and a function containing only the initial and final
state QED corrections. This ad hoc assumption, although
criticizable, seems to be the best we can do so far. Ap-
plying the procedure of real and IR photon subtraction as
described above then yields

σsubtr
obs (s) � σ(0)(s)

[
1 + δ̃V+S

ini (s) + δ̃V+S
fin (s)

]
, (2.15)

which is the O(α) cross section including only the non-IR
initial and final state soft plus virtual corrections corre-
sponding to δ̃V+S

ini (s) and δ̃V+S
fin (s). Here of course the final

state correction factor δ̃V+S
fin (s) is not known. Thus at this

stage we have two unknowns: σ(0)(s) and the FSR cor-
rection. Only after assuming that FSR is given by sQED
or fQED we can then extract the undressed or the FSR-
inclusive cross section from σsubtr

obs (s) via the following for-
mulas (see Appendix B):

σ̂(0)(,f)(s) = σsubtr
obs (s)

1
1 + δ̃V+S

ini (s) + δ̃V+S
fin(,f)(s)

, (2.16)

σ̂(γ)(,f)(s) = σsubtr
obs (s)

1 +
α

π
η(f)(s)

1 + δ̃V+S
ini (s) + δ̃V+S

fin(,f)(s)
. (2.17)

Using (2.16) we could try to estimate the uncertainty for
the extraction of σ̂(0)(s) via

∆excl.
scan,0(s) =

σ̂(0)(s) − σ̂(0),f(s)
σ̂(0)(s)

= 1 − 1 + δ̃V+S
ini (s) + δ̃V+S

fin (s)

1 + δ̃V+S
ini (s) + δ̃V+S,f

fin (s)
. (2.18)

The such estimated model error is shown in Fig. 6 [curve
(0)]. We would like to stress that we should be careful
not to take this error estimate obtained from the compar-
ison of two factorizable models too seriously. In fact, if we
would make the analogous comparison for the extraction
of σ̂(γ)(s) the such obtained error would be of the level
of 1 per mill. However, we would expect a larger error
from non-factorizable FSR contributions which cannot be
estimated.
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Fig. 6. Model error estimations for the extraction of the ab-
solute square of the pion form factor in an exclusive scenario
[see (2.18) and (2.20)]

As an alternative possibility we may try, in the spirit
of (2.1), what we get if we just correct for the model-
independent ISR and the model-independent IR-sensitive
part of FSR, obtaining

σ̃(γ)(s) =
σsubtr

obs (s)
1 + δ̃V+S

ini (s)
. (2.19)

Defining

∆excl.
scan,γ(s) =

σ̃(γ)(s) − σ̂(γ)(s)
σ̃(γ)(s)

= 1 −

[
1 +

α

π
η(s)

]
[1 + δ̃V+S

ini (s)]

1 + δ̃V+S
ini (s) + δ̃V+S

fin (s)
(2.20)

we can get a feeling for how well σ̃(γ)(s) approximates the
true σ(γ)(s) [estimated here by (2.17)]. The result is shown
in Fig. 6 [curve (γ)].

To summarize: what can we get from a hard-photon
exclusive measurement?
(i) σ(0): in spite of the fact that all real hard photons
have been eliminated by cuts a surprisingly large model
uncertainty due to hard virtual photons poses an inherent
limitation: the corresponding uncertainty cannot fall be-
low the level of about 0.5% (sQED). Strictly speaking σ(0)

is not accessible to experiment or only at limited precision
by the fact that we cannot switch off virtual QED effects
in reality.
(ii) σ(γ): the missing real hard photons must be calculated
from a model like sQED and added by hand. What we
get is a model-dependent σ̂(γ),(model)(s). Surprisingly, the
model dependence we estimate by our method (assuming
factorization with a single scale form factor) for this ob-
ject is much smaller (at the level of 0.1% only). On the one
hand this reduced model dependence can be traced back
to the Kinoshita–Lee–Nauenberg (KLN) theorem, which
infers that radiative corrections for total inclusive cross

sections are free from large logs. On the other hand it is
not conceivable that we get a more precise knowledge of
σ(γ) from not measuring hard photons than from actually
measuring everything. In the latter case the uncertainty
shown in Fig. 1 has been estimated, which, as expected,
shows an increasing uncertainty for increasingly strong
cuts. Nevertheless, even though we think that our method
of estimating the model dependence underestimates the
error in the exclusive case, it is a quantity which is pro-
tected by the KLN theorem from large effects and thus
is a quantity which seems to be under much better con-
trol than e.g. the bare σ(0). How much better is hard to
quantify at this stage.
(iii) σ̃(γ)(s): is model-independent per definition but it is
not the quantity of actual interest, as it is not a good
approximation to σ(γ). After all the hard real photons
are missing here and again we only can get what we are
interested in by adding the missing piece using a model. If
we do so we end up with σ̂(γ),(model)(s) again, up to higher
order terms. Then we are essentially back at (ii).

3 Model errors
in radiative return measurements

At radiative return experiments the spectral function dσ/

ds′ is measured where s′1/2 is the invariant mass of the
non-photonic final state. Let us first have a look at our
“master formula” (2.1) which is the photon-inclusive cross
section in form of a convolution integral in the integration
variable sV, sV being the invariant mass square of the
hadronic final state including the FSR photons but ex-
cluding the ISR photons. One could think that, due to
the factorization of ISR and FSR already on the matrix
element level [see (A.5)], it is possible to extract σ(γ)(sV)
also from a radiative return measurement at fixed s. Of
course by rewriting (2.1) we can formally get

dσincl

dsV
= σ(γ)(sV)ρincl

ini (s, sV) + O(α2)IFS. (3.1)

However, we cannot extract σ(γ)(sV) from the experimen-
tal data for the simple reason that sV is not an observable.
This can be immediately seen already for the case of single
photon emission where we have sV = s′ if the photon is
emitted from the initial state, but sV = s if the photon is
emitted from the final state. Since on an event level ISR
and FSR photons cannot be distinguished, sV cannot be
obtained from the observables s and s′. The error we would
make when identifying s′ with sV is therefore of leading
order FSR. This is one way to see that not only there is no
way to measure the FSR-inclusive cross section σ(γ)(s) in
a radiative return measurement, but, in fact, we have to
deal with an O(1) FSR background leading to an in gen-
eral significant model error for the extraction of even the
undressed cross section σ(0)(s). In the following we there-
fore are going to investigate the model error for radiative
return scenarios in a separate analysis.
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Taking into account radiative corrections in the ap-
proximation where only the leading single photon radia-
tion from the final state is included, the observed spectral
function can be expressed as the sum of an ISR and an
FSR contribution since the IFS contribution drops out:(

dσ

ds′

)
obs

= σ(0)(s′)ρ̃ini(s, s′) + σ(0)(s)ρ̃fin(s, s′). (3.2)

Again we refer to Appendix B and [13] for the explicit
expressions. Because we are interested in measuring the
FSR-inclusive cross section it is tempting to extract the
quantity

σ̃(γ)(s′) =
1

ρ̃ini(s, s′)

(
dσ

ds′

)
obs

, (3.3)

which is obtained by just subtracting the ISR part and
dropping the model-dependent last term of (3.2). How-
ever, since what we really want to get is σ(γ)(s), we have
to rewrite (3.2) in terms of this true O(α) FSR-inclusive
cross section. We easily find

σ(γ)(s′) =
1

ρ̃ini(s, s′)

(
dσ

ds′

)
obs

+ δr.r.(s, s′), (3.4)

with

δr.r.(s, s′) = − ρ̃fin(s, s′)
ρ̃ini(s, s′)

σ(0)(s) +
α

π
η(s′)σ(0)(s′). (3.5)

We can see that the first term of (3.5) is of O(1) but
the second of O(α), so that no cancellation up to higher
order terms is possible! The first term may be considered
as a correction term only in the region where we have
a large enhancement of σ(0)(s′) by the ρ resonance, in
particular, in comparison to the reference cross section
σ(0)(s) at s = M2

Φ (or M2
B). In addition, the mass effects

of photon radiation by the pions versus the ones from
the electron–positron system in fact lead to quite some
suppression of ρ̃fin(s, s′) in comparison to ρ̃ini(s, s′), both
of which are of O(α). We conclude that, in radiative return
experiments, a direct model-independent extraction of the
FSR-inclusive σ(γ)(s′) is not possible at O(α) precision in
the naive way just considered.

Since we try here to discuss O(α) corrections to σ(0)

(s′), which in the radiative return scenario is given by

σ(0)(s′) =
1

ρ̃ini(s, s′)

(
dσ

ds′

)
obs

− ρ̃fin(s, s′)
ρ̃ini(s, s′)

σ(0)(s), (3.6)

one obvious deficiency of our starting equation (3.2) is the
missing higher order corrections. In the resolved form (3.6)
we are at the O(1) level only and thus we are not able to
seriously address the question of an FSR-inclusive mea-
surement. Obviously we lose one order in α in a radiative
return measurement. A discussion beyond leading order
FSR would be possible only if the complete next order
version of (3.2) would be available. The need for going to
higher orders also leads to more problems with the treat-
ment of hard photons radiated by the pions. Of course

the limitations are coming from the fact that virtual hard
photon emission by the pions cannot be switched off and
our limited theoretical knowledge of the higher order con-
tributions has its drawbacks for a precise determination
of σ(0)(s′) or σ(γ)(s′). The basic problems and limitations
discussed above for exclusive scan measurements also ap-
ply for the radiative return method. Nevertheless, a dis-
cussion on the basis of (3.2) addresses the major difficulty
we encounter in the attempt to measure the FSR-dressed
cross section in a radiative return experiment.

As (3.4) tells us, the FSR correction (α/π)η(s′), given
precisely by the second term of (3.5), is completely lost
once we drop δr.r.(s, s′) in order to get the model-inde-
pendent quantity (3.3), which means that the latter is not
a very meaningful quantity. Therefore, in [13] we proposed
to unfold the raw data from all photon radiation, by mod-
eling FSR by generalized sQED. The extracted undressed
cross section σ(0)(s) then suffers from model dependence.
From the preceding discussion we know what the actual
problem is: in the first place we have to control the first
term (3.5) which is suppressed by ρ̃fin(s, s′)/ρ̃ini(s, s′) and
in regions where σ(0)(s)/σ(0)(s′) is small but otherwise is
of O(1).

A measure for the relative importance of the disturbing
model-dependent FSR term δr.r. is

δrFSR(s′, s) =
σ̃(γ)(s′) − σ(0)(s′)

σ(0)(s′)
, (3.7)

which is indeed a measure for the importance of FSR as
given by the radiator function ρ̃fin(s, s′). It has to be com-
pared with (2.13) which measures the FSR in the inte-
grated form (2.5) for the case of a scan experiment. Obvi-
ously, (3.7) definitely does not account for the (α/π)η(s′)
term in σ(γ)(s′). We may consider it, however, as a mea-
sure for the model dependence of the extraction of the
undressed σ(0)(s′). Thus let us point out once more that
it would be misleading to think that σ̃(γ)(s′) in any sense
would approximate σ(γ)(s′) to better than the O(1) level.
Although it includes FSR effects, it does not include the
ones we are looking for.

The size of FSR effects for the radiative return scenario
is depicted in Fig. 7.

Clearly the effect is large both in the soft (s′ <∼ s) and
the hard (s′ 	 s) photon limits. It is small only where it is
suppressed by a large σ(0)(s′), i.e., around the ρ resonance.

In fact, the increase of δrFSR(s′, s) in the soft pho-
ton regime (for s′ → s) just means that soft photon FSR
effects become large and does not imply a large model
dependence. Hence taking (3.7) as an estimation of the
model error would be too rough. It does not yet take into
account that sQED describes well the soft photon regime.
In order to get a more realistic measure for the model
dependence we have to proceed as in the previous section.

Given the experimental distribution (dσ/ds′)obs in
(3.2) the extracted σ(0)(s′) depends on the unknown FSR
radiator ρ̃fin(s, s′), which we again model by sQED. Anal-
ogously to our analysis for the scan scenario [see (2.14)] we
compare the result for a scalar versus a fermionic radiator
by looking at
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Fig. 7. Importance of FSR for sQED. The curve shows the
scenario for the extraction of |F (0)

π (s′)|2 in radiative return
experiments (s1/2 = MΦ) estimated by once including and once
excluding final state corrections [see (3.7)]

∆r.r.
f (s′) =

σ(0),f(s′) − σ(0)(s′)
σ(0)(s′)

, (3.8)

with σ(0)(s′) extracted assuming sQED and σ(0),f(s′) ex-
tracted assuming a fermionic radiator ρ̃f

fin(s, s′) [see (B.2)
and (B.3)].

The result is shown in Fig. 8. We would like to stress
once more that (3.2) does not incorporate the ISR ⊗ FSR
and IFS effects, which account for an additional O(α)
model error contribution. Thus, Fig. 8 when taken without
this proviso is misleading at energies where the O(1) term
is kinematically suppressed to be smaller than the miss-
ing, presently unknown, O(α) terms11, which are expected
to be at the few per mill level.

Clearly, the “scalar versus fermionic” scenario gives, as
expected, a small model dependence for the soft photon
region but the model error remains large for pion pair
production near threshold energies where hard photons
are involved necessarily.

We repeat that for radiative return experiments we
cannot see a possibility to measure the FSR-inclusive cross
section σ(γ)(s), at least not in some obvious way. We only
are able to extract the undressed cross section σ(0)(s).
At O(α) precision even this is only possible in a model-
dependent way, since the problems are the same as the
ones we have addressed earlier for the exclusive scan mea-
surements. To get σ(γ)(s) we must add the FSR as given
by sQED, with the drawback that we have to live with
the model dependence as illustrated by Fig. 8. Since the
disturbing second term in (3.2) is much smaller for a ra-
diative return experiment at a B-factory, it seems that
the chances to get a model-independent determination of
σ(0)(s′) there could be good for what concerns the theo-
retical uncertainties associated with FSR. It can be easily
checked that for such measurements at a B-factory indeed

11 Their evaluation would require a full two-loop calculation
of the process e+e− → π+π−

Fig. 8. Estimated relative model error for the extraction of
|F (0)

π (s′)|2 in radiative return experiments (s1/2 = MΦ). The
curve describes a scenario where the model error is estimated
by a comparison of FSR once from scalar particles and once
from fermions of the same charge and mass

the model error is limited by higher order FSR effects (not
considered here) since the O(1) FSR contribution is es-
sentially 0 due to the fact that σππ(s = M2

Υ4S
)/σππ(s ≤

1 GeV) <∼ 0.04. The observed cross section, on the other
hand, is reduced by about two orders of magnitude with
respect to Φ-factory measurements. However, for the
BABAR experiment at SLAC this drawback is compen-
sated by a very high luminosity which is about a factor of
400 larger than at the DAΦNE collider. It is important to
note that a good control of ISR will be required since the
gap between s′ and s is much larger than for Φ-factories.
In particular the singlet initial state pair production chan-
nel “e+e− → π+π−e+e−” yields the dominant contribu-
tion to the inclusive channel “e+e− → π+π− + anything”
at B-factory energies, being about a factor of 3 larger
around the ρ peak and even a factor of about 30 larger
near ππ threshold than the contribution from “e+e− →
π+π− + photons”. Higher order photonic corrections also
have to be taken into account. Leading log photonic O(α3)
corrections here contribute about 0.3 per cent to the in-
clusive spectral function.

Let us now apply C-symmetric angular cuts to the
calculations concerning the radiative return method. Cut
objects have been defined in (B.18)–(B.21).

Analogously to the case without cuts in (3.7) the im-
portance of the FSR contribution for a C-symmetric cut
scenario can be defined as the relative deviation of

σ̃
(γ)
cut(s

′) =
1

ρcut
ini (s′, s)

(
dσ

ds′

)
obs,cut

(3.9)

from the undressed cross section σ
(0)
cut:

δrFSR
cut (s′) =

σ̃
(γ)
cut(s′) − σ

(0)
cut(s′)

σ
(0)
cut(s′)

. (3.10)
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Fig. 9. Relative FSR contribution as given by sQED obscuring
the extraction of |F (0)

π (s′)|2 in radiative return experiments
(s1/2 = MΦ) for different angular cuts [see (3.10)]. Curve (a) is
the same as the curve in Fig. 7. Curve (b) corresponds to the
cut scenario where only events are taken into account for which
the laboratory angle between the pion momenta and the beam
axis θπ is larger than 30◦ and the laboratory photon angle θγ

is restricted to a region 7◦ ≤ θγ ≤ 20◦. In a similar way curve
(c) corresponds to θπ ≥ 40◦ and θγ ≤ 25◦

Fig. 10. Estimated relative model error in per mill for the ex-
traction of |F (0)

π (s′)|2 in radiative return experiments (s1/2 =
MΦ) for different angular cuts. Here the scenario is shown
where the model error is estimated by a comparison of FSR
from scalar particles with FSR from fermions of the same
charge and mass [see (3.13)]. The cut scenarios (a), (b) and
(c) are the same as in Fig. 9

Again we may “guesstimate” a model uncertainty by
replacing and comparing the sQED model with the fQED
model. In the latter case we replace ρcut

fin (s, s′) by

ρcut
fin,f(s, s

′) =
1

σpoint,f
0,cut (s)

(
dσ

ds′

)point,f

fin,cut
(3.11)

where

σpoint,f
0,cut (s) = π

α2β3
π cos ΘM

π

s

Fig. 11. Pion pair invariant mass distribution in radiative
return experiments (s1/2 = MΦ) for the three discussed cut
scenarios

×
(

s + 4m2
π

s − 4m2
π

+
1
3

cos2 ΘM
π

)
, (3.12)

ΘM
π being the minimal angle between the pion momenta

and the beam axis allowed by the given cuts. In analogy
to the case without cuts in (3.8) we then may define a
model error as

∆r.r.
f,cut(s

′) =
σ

(0),f
cut (s′) − σ

(0)
cut(s′)

σ
(0)
cut(s′)

. (3.13)

Figure 9 shows the FSR contribution and Fig. 10 the es-
timated model error for different kinematic cuts. It is in-
teresting to note that the FSR contribution can be clearly
reduced by the chosen kinematic cuts. This is especially
obvious in the soft photon region. The suppression of the
model error, being estimated by the scalar versus fer-
mionic scenario, by the considered cuts, however, is not
obvious. As a matter of fact the cross sections drop out
very quickly for low s′1/2 and vanish (up to higher order
effects) below s′1/2 � 0.5 GeV (see Fig. 11).

Finally we would like to comment on the estimation of
FSR from a measurement of the pion forward–backward
asymmetry [15], defined as

AFB(s′) =

(
dσ

ds′

)cos θπ<0

−
(

dσ

ds′

)cos θπ>0

(
dσ

ds′

)cos θπ<0

+
(

dσ

ds′

)cos θπ>0

=

(
dσ

ds′

)cos θπ<0

int(
dσ

ds′

)cos θπ<0

ini
+
(

dσ

ds′

)cos θπ<0

fin

. (3.14)

Here θπ is the angle between the momentum of the
incoming e− and the outgoing π−. One could think that
if AFB is small also the FSR contribution must be sup-
pressed, because, as can be seen from (3.14), the IFS con-
tribution to the spectral function (dσ/ds′)int determines
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Fig. 12. Forward–backward asymmetry in per mill of nega-
tively charged pions in radiative return experiments. θπ is here
the angle between the momentum of the incoming e− and the
outgoing π−

Fig. 13. Ratio of the IFS contribution to final state contribu-
tion for cos θπ < 0. Here θπ is the angle between the momentum
of the incoming e− and the outgoing π−

the size of AFB. The smallness of AFB, enhanced by kine-
matic cuts, could then be taken as a measure for the sup-
pression of FSR in experiments. In Fig. 12 AFB is shown
for the three different cut scenarios. If we compare Fig. 12
with Figs. 7, 8, 9 and 10 we observe that we would get a
different estimation of the model dependence from AFB
than from our previous analysis of FSR. For example, for
the case of no cuts we get an increasing model dependence
from our investigation of FSR if s′ approaches threshold
while AFB decreases for s′ → 4m2

π.
Obviously, AFB is affected by FSR and hence can only

be predicted by assuming a model like sQED. A compari-
son of such a prediction with the experimental data is able
to shed light on the validity of such a model. For instance,
if we observe a good agreement of the measured AFB with

the sQED prediction we could expect that likely also the
FSR prediction by sQED could be a good approximation.

Of course AFB is not a direct measure of FSR and
hence of the model dependence related to it. In fact the
ratio of the FSR contribution and the IFS contribution
is a strongly varying function of s′ (see Fig. 13). While in
the region of the ρ resonance this ratio is relatively large it
becomes small for low s′. This is true no matter whether
cuts are applied or not.

4 Conclusions

The importance of FSR for the extraction of the pion form
factor from experimental data and for determining ahad

µ

has been discussed both for scan and radiative return ex-
periments.

We have shown that, by a photon-inclusive measure-
ment and just subtracting ISR, a direct extraction of the
FSR-inclusive cross section σ(γ) in scan experiments is
possible with excellent accuracy. In this case the model
error is due to the breaking of ISR⊗FSR factorization by
kinematic cuts and is of the order of a few per mill for the
discussed C-symmetric angular cuts.

On the other hand for exclusive measurements it is
much more difficult to give a reliable estimation of the
model error. The main reason is that without relying on
ad hoc models like sQED we are not able to disentangle
the QCD quantity (pion form factor) to be extracted from
the real and virtual QED corrections.

For radiative return measurements a direct extraction
of σ(γ)(s) is not possible. In fact we can neither obtain
σ(γ)(s) nor σ(0)(s) at O(α) FSR precision without resort-
ing to a model. Furthermore we have to deal with an O(1)
FSR background which is under control only if one of the
following criteria apply:
(i) it can be subtracted by using factorization in the soft
photon region (s′ � s),
(ii) it is suppressed by kinematic cuts (where it is possible)
or
(iii) it is negligible in regions where σ(0)(s′) � σ(0)(s). We
have shown that at φ factories like DAΦNEwe can control
this FSR background only above s′1/2 � 500 MeV.

We also had a look at the pion forward–backward asym-
metry which is a model-dependent quantity and thus is
able to test model predictions against reality. Suppose
that the data would agree well with the sQED prediction;
then this could be an indication that sQED also is able
to describe FSR to some extent. However, it is not possi-
ble to estimate the FSR contribution in a straightforward
way from a measurement of AFB. The ratio of the FSR
and the IFS correction is a strongly varying function of
s′1/2. AFB becomes small for low s′1/2 although the final
state correction and hence the related model dependence
is large.

For radiative return measurements of |F (0)
π (s)|2 at B-

factories the O(1) FSR background term is practically ab-
sent. The model uncertainty due to FSR for the extraction
of the undressed pion form factor in this case is determined
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by higher order effects. At BABAR the smallness of the
observed cross section is compensated by a high luminos-
ity. Initial state corrections here have to be known to a
high precision. In particular for s′1/2 ≤ 1 GeV the domi-
nant pion pair production channel is e+e− → π+π−e+e−.

In conclusion, to measure the FSR-inclusive pion form
factor |F (γ)

π (s)|2 precisely and in a model-independent
manner at low energies, precise data from photon-inclusive
scan experiments will be indispensable. We hope that such
an experiment will be possible at DAΦNEat a later stage.
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Appendix

A Factorization of ISR and FSR

Consider the process “e+e− → γ∗ → X +photons” where
X is an arbitrary non-photonic final state and the photons
can either be emitted from the initial state (IS) or the
final state (FS). We are interested in an expression for
the inclusive total cross section σincl ≡ σ(e+e− → X +
photons) in terms of the FSR-inclusive cross section that is
dressed by all real and virtual FS photonic corrections σ(γ)

and a universal IS radiator function ρincl
ini corresponding

to all IS real and virtual corrections. As will be shown in
the following such a factorization is in fact possible up to
O(α2) IFS real and virtual QED corrections.

Let us consider first the process e+e− → γ∗ → X +rγ,
where r is a given number of real photons which can be
emitted either from the IS or the FS. The amplitude M(r)

corresponding to this process can be written as the sum of
all sub-amplitudes M(vi,vf )

(ri,rf )
corresponding to ri real and vi

virtual photons attached to the IS e+e− pair, rf real and
vf virtual photons attached to the final state X, and vint
additional virtual photons connecting the IS and the FS.
For given r we have the condition ri + rf = r. In the
following we will neglect box-like diagrams; thus, we put
vint = 0. Hence we only keep the pure IS and FS virtual
corrections (we will come back to the IFS contributions
later). The IR divergences of the virtual corrections are
assumed to be regularized by a small photon mass. With-
out such an IR regulator M(r) would not be defined. Ob-
viously M(r) by itself does not correspond to a physical
observable. However, at the end, after summation of all
the contributions corresponding to all sub-amplitudes, we
will obtain IR finite, physical quantities and the IR reg-
ulator can be removed. The amplitude corresponding to
the emission of r real photons can now be written as

M(r) =
∑
ri,f

∞∑
vi,f=0

M(vi,vf )
(ri,rf )

∣∣∣
ri+rf=r

=
∑
ri,f

∞∑
vi,f=0

[
A(ri,vi)

µ (q, qV, {k(i)})

× Bµ
(rf ,vf )

(qV, {k(X)}, {k(f)})
]

ri+rf=r
, (A.1)

where {k(i)} = {k
(i)
1 . . . k

(i)
ri } are the IS real photon mo-

menta, {k(f)} = {k
(f)
1 . . . k

(f)
rf } the FS real photon mo-

menta, {k(X)} = {k
(X)
1 . . . k

(X)
nX } the momenta of the non-

photonic FS particles, q = p1+p2 the sum of the incoming
e+e− momenta and finally qV = q −∑ k(i) =

∑
k(X) +∑

k(f) the momentum of the virtual photon γ∗(qV) con-
necting the IS and the FS. In (A.1) we have written the
sub-amplitudes M(vi,vf )

(ri,rf )
as contractions of rank-1 tensors

A
(ri,vi)
µ containing the IS real and virtual corrections with

the rank-1 tensors Bµ
(rf ,vf )

containing the FS real and
virtual corrections and the photon propagator related to
γ∗(qV). This factorization of the amplitude is only possible
because we have neglected the virtual IFS contributions.
Defining

Ã(ri)
µ (q, qV, {k(i)})

=
∞∑

vi=0

A(ri,vi)
µ (q, qV, {k(i)}),

B̃µ
(rf )

(qV, {k(X)}, {k(f)})

=
∞∑

vf=0

Bµ
(rf ,vf )

(qV, {k(X)}, {k(f)}), (A.2)

thus summing over all virtual IS and FS virtual correc-
tions, we can write M(r) simply as

M(r) =

{[∑
ri

Ã(ri)
µ (q, qV, k(i))

]

×
[∑

rf

B̃µ
(rf )

(qV, k(X), k(f))

]}
ri+rf=r

. (A.3)

Let us remember that M(r) contains all IS and FS vir-
tual corrections to the given channel with r real (IS or
FS) photons. Squaring the amplitude, averaging over the
incoming e+e− spins and summing over the spins of the
ISR photons s(i), the spins of the FSR photons s(f) and
the spins of the non-photonic particles s(X) yields

|M(r)|2 =
1
4

∑
s(X)

∑
s(i)

∑
s(f)

∑
ri,rf

|M(ri,rf )|2 + IFS terms

=
∑
ri,rf

|M(ri,rf )|2 + IFS terms, (A.4)

where “IFS terms” corresponds to real photon IFS contri-
butions. Since we neglected already the virtual IFS con-
tributions we have to do the same for the real IFS con-
tributions. Otherwise we would have no cancellation of
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the IR divergences if later, after summing up all contribu-
tions r = 0, . . . ,∞, we want to remove the IR regulator.
Neglecting the IFS contributions we can now express the
squared amplitude |M(r)|2 as a sum of the incoherent con-
tributions |M(ri,rf )|2 which can be written as a contraction
of an IS and a FS tensor, respectively:

|M(ri,rf )|2 = E(ri)
µν (q, qV, {k(i)})Fµν

(rf )
(qV, {k(X)}, {k(f)}),

(A.5)

with

E(ri)
µν (q, qV, {k(i)})

=
1
4

∑
s(i)

Ã(ri)
µ (q, qV, {k(i)})Ã(ri)∗

ν (q, qV, {k(i)}), (A.6)

Fµν
(rf )

(qV, {k(X)}, {k(f)})

=
∑
s(f)

∑
s(X)

B̃µ
(rf )

(qV, {k(X)}, {k(f)})

×B̃∗ν
(rf )(qV, {k(X)}, {k(f)}). (A.7)

Note that E
(ri)
µν (q, qV, {k(i)}) now only contains the IS real

and virtual corrections while Fµν
(rf )

only contains the FS
real and virtual corrections. Thus, already at this stage
we obtain complete factorization of the IS and the FS
corrections. Phase space integration over the ri + rf + nX

particle final state yields the total cross section related
to the emission of ri IS and rf FS photons [βe = (1 −
4m2

e/s)1/2, s = q2],

σri,rf (s) =
1

2sβe

∫ ri∏
a=1

rf∏
b=1

nX∏
c=1

dLips(i)a dLips(f)b dLips(X)
c

× (2π)4δ(4)

(
q −

ri∑
a=1

k(i)
a −

rf∑
b=1

k
(f)
b −

nX∑
c=1

k(X)
c

)

× |M(ri,rf )|2, (A.8)

with

dLips(i)a =
d3k

(i)
a

(2π)32E
(i)
a

, dLips(f)b =
d3k

(f)
b

(2π)32Eb
,

dLips(X)
c =

d3k
(X)
c

(2π)32E
(X)
c

. (A.9)

For the real photons the same IR regulator (photon mass)
has to be used as for the virtual photons. Hence we are
all the time dealing with IR-regularized expressions. Al-
though (A.8) includes now virtual and real photon IS and
FS corrections we cannot remove the IR regulator since
we included only r real photons but virtual corrections to
all orders. σri,rf (s) is obviously not a physical quantity by
itself. Inserting the following identities (with sV = q2

V),

1 =
∫

d4qVδ(4)

(
qV −

rf∑
b=1

k
(f)
b −

nX∑
c=1

k(X)
c

)

and

1 =
∫

dsVδ(sV − q2
V), (A.10)

into (A.8) yields

σri,rf (s) =
1

2sβe

∫
dsV

∫ ri∏
a=1

dLips(i)a

d3qV

2q0
V

× δ(4)

(
q − qV −

ri∑
a=1

k(i)
a

)

× E(ri)
µν (q, qV, {k(i)})Fµν

(rf )
(qV), (A.11)

with the integrated FSR tensor

Fµν
(rf )

(qV) =
∫ rf∏

b=1

nX∏
c=1

dLips(f)b dLips(X)
c

× (2π)4δ(4)

(
qV −

rf∑
b=1

k
(f)
b −

nX∑
c=1

k(X)
c

)

× Fµν
(rf )

(qV, {k(X)}, {k(f)}). (A.12)

From Lorentz covariance follows that the integrated FSR
tensor can be written as a linear combination of the two
linear independent tensors gµν and qµ

Vqν
V:

Fµν
(rf )

(qV) = A(rf )(sV)gµν + B(rf )(sV)qµ
Vqν

V

= A(rf )(sV)
(

gµν − qµ
Vqν

V

sV

)
(A.13)

=
1
3
tr
[
Fµ

(rf )ν
(qV)

](
gµν − qµ

Vqν
V

sV

)
.

For the second equality in (A.13) gauge invariance has
been used, implying the Ward identity qVµFµν

(rf )
(qV) = 0.

Note that for the special case of no ISR photon emission
(ri = 0) the related total cross section corresponding to
the emission of rf = r FSR photons can be written as

σ0,rf (s) =
1

2sβe
E(0)

µν (q)Fµν
(rf )

(q), (A.14)

with the lowest order IS tensor

E(0)
µν (q) = e2

(
p1µp2ν + p2µp1ν − s

2
gµν
)

. (A.15)

Taking into account the Ward identity qµE
(0)
µν (q) = 0 and

using (A.13) we can write

σ0,rf (s) =
1

2sβe(s)
tr[E(0)ν

µ (q)]
1
3
tr
[
Fµ

(rf )ν
(q)
]

= −e2

3
s + 2m2

e

2sβe(s)
tr
[
Fµ

(rf )ν
(q)
]
. (A.16)

For the general case including ri ISR photons the following
Ward identity holds:

qµ
VE(ri)

µν (q, qV, {k(i)}) = 0. (A.17)
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Inserting the expression for Fµν(qV) in (A.13) into (A.11)
we can write the cross section corresponding to the emis-
sion of ri ISR and rf FSR photons as

σri,rf (s) =
1

2sβe

∫
dsV

1
3
tr
[
Fµ

(rf )ν
(qV)

]

×
∫ ri∏

a=1

dLips(i)a

d3qV

2q0
V

δ(4)

(
q − qV −

ri∑
a=1

k(i)
a

)

× tr[E(ri)ν
µ (q, qV, {k(i)})] (A.18)

(note that tr
[
Fµ

(rf )ν
(qV)

]
= 3A(rf )(sV) is only a function

of sV). Hence, using (A.16), we finally arrive at

σri,rf (s) =
∫

dsVσ0,rf (sV)ρ(ri)
ini (s, sV), (A.19)

with

ρ
(ri)
ini (s, sV) = − 1

e2

1
s + 2m2

e

∫ ri∏
a=1

dLips(i)a

d3qV

2q0
V

× δ(4)

(
q − qV −

ri∑
a=1

k(i)
a

)

× tr[E(ri)ν
µ (q, qV, {k(i)})]. (A.20)

[Note that for the case of no ISR photons the above equa-
tion directly gives ρ

(0)
ini (s, sV) = δ(s − sV) which just pro-

jects out σ0,rf (s) in (A.19)]. At this point we can ask the
question what will be the expression for the inclusive total
cross section σincl(s) with any number of real and virtual
IS and FS photons. Neglecting the IFS contributions we
can immediately write σincl(s) as the incoherent sum of
all ISR ⊗ FSR contributions:

σincl(s) =
∞∑

ri,rf=0

σri,rf (s) (A.21)

=
∫

dsVσ(γ)(sV)ρincl
ini (s, sV) + O(α2)IFS,

with

σ(γ)(sV) =
∞∑

rf=0

σ0,rf (sV),

ρincl
ini (s, sV) =

∞∑
ri=0

ρ
(ri)
ini (s, sV). (A.22)

So in (A.21) we finally expressed the completely inclusive
total cross section σincl(s) = σ(e+e− → X +photons) in a
factorized form. Note that σ(γ)(sV) now contains the real
and virtual FS corrections to all orders and ρincl

ini (s, sV)
contains the real and virtual IS corrections to all orders.
σ(γ)(s) and ρincl

ini (s, sV) are separately IR finite and the IR
regulator can therefore be removed. This of course has to
be the case since σincl(s) is [up to O(α2) IFS effects] a
physical observable.

Using the above formulas it is now straightforward to
express σincl in (A.21) as a perturbation series in α. For
simplicity we will show explicitly the expansion only to
O(α). For this we write the FSR-inclusive cross section as
the expansion

σ(γ)(s) =
∞∑

rf=0

∞∑
vf=0

∞∑
v′
f=0

σ(rf ,vf ,v′
f )(s), (A.23)

with

σ(rf ,vf ,v′
f )(s) =

1
2sβe(s)

∫ rf∏
b=1

nX∏
c=1

dLips(f)b dLips(X)
c (A.24)

× (2π)4δ(4)

(
q −

rf∑
b=1

k
(f)
b −

nX∑
c=1

k(X)
c

)
|M|2(rf ,vf ,v′

f )
,

and

|M|2(rf ,vf ,v′
f )

= −e2

3
(s + 2m2

e)

×
∑
s(f)

∑
s(X)

[
B(rf ,vf )µ(q, {k(X)}, {k(f)})

×B∗µ
(rf ,v′

f )
(q, {k(X)}, {k(f)})

]
. (A.25)

Also the inclusive IS radiator we write as an expansion:

ρincl
ini (s, sV) =

∞∑
ri=0

∞∑
vi=0

∞∑
v′
i=0

ρ(ri,vi,v′
i )(s, sV) (A.26)

with

ρ(ri,vi,v′
i )(s, sV) = − 1

4e2

1
s + 2m2

e

∫ ri∏
a=1

dLips(i)a

d3qV

2q0
V

× δ(4)

(
q − qV −

ri∑
a=1

k(i)
a

)
A(ri,vi)

µ (q, qV, {k(i)})

×A∗µ
(ri,v′

i )
(q, qV, {k(i)}). (A.27)

The inclusive cross section can then be written as

σincl(s) =
∫

dsV

{[
σ(0,0,0)(sV) + σ(1,0,0)(sV)

+ σ(0,1,0)(sV) + σ(0,0,1)(sV)
]

×
[
ρ(0,0,0)(s, sV) + ρ(1,0,0)(s, sV)

+ ρ(0,1,0)(s, sV) + ρ(0,0,1)(s, sV)
]}

+ O(α2)

= σ(γ)(s) [1 + δini(s, Λ)] (A.28)

+
∫ s−2

√
sΛ

smin
V

dsVσ(γ)(sV)ρini(s, sV) + O(α2),



276 J. Gluza et al.: Measuring the FSR-inclusive π+π− cross section

with

σ(γ)(sV) = σ(0,0,0)(sV) + σ(1,0,0)(sV)

+ σ(0,1,0)(sV) + σ(0,0,1)(sV) + O(α2),
ρini(s, sV) = ρ(1,0,0)(s, sV),

δini(s, Λ) =
∫ s

smin
V

dsV
[
ρ(0,1,0)(s, sV) + ρ(0,0,1)(s, sV)

]

+
∫ s

s−2
√

sΛ

dsVρ(1,0,0)(s, sV). (A.29)

Here Λ is the soft photon cut off, σ(0,0,0)(s) = σ(0)(s), and
ρ(0,0,0)(s, sV) = δ(s − sV).

The above derivation had many steps; however, it
should be stressed that the most important one to get
ISR ⊗ FSR factorization was the use of Lorentz covari-
ance and gauge invariance in (A.13). If kinematical cuts
are applied then ISR⊗FSR factorization breaks down be-
cause (A.13) will not be valid any more. Perturbatively
this occurs already at O(α), as we show in Appendix B.

B Scalar and fermionic final state corrections
to π+π− production

Taking final state corrections up to O(α) into account the
observed pion pair invariant mass distribution can be writ-
ten as the sum of an ISR and an FSR contribution:(

dσ

ds′

)
obs

= σ(0)(s′)ρ̃ini(s, s′) + σ(0)(s)ρ̃fin(s, s′). (B.1)

For the analytic expression of the initial state radiator
function ρ̃ini(s, s′), including radiative corrections up to
leading log O(α3) and leading initial state e+e− pair pro-
duction contributions, we refer to (17) in [13]. Integrating
the spectral function in (B.1) over s′ yields the observed
total cross section σobs(s).

The O(α) final state radiator functions, corresponding
to hard photon radiation from scalar particles ρ̃fin(s, s′)
and from fermionic particles ρ̃f

fin(s, s′), read (z = s′/s)

ρ̃fin(s, s′) =
1
s

{
− δ(1 − z) +

[
1 + δ̃V+S

fin (s)
]

(B.2)

× Bπ(s, s′) [1 − z]Bπ(s,s′)−1 + δ̃H
fin(s, s′)

}
,

ρ̃f
fin(s, s′) =

1
s

{
− δ(1 − z) +

[
1 + δ̃V+S

fin,f (s)
]

(B.3)

× Bπ(s, s′) [1 − z]Bπ(s,s′)−1 + δ̃H
fin,f (s, s′)

}
,

respectively, with the corresponding hard and soft photon
functions

δ̃H
fin(s, s′) =

2α

π
(1 − z)

βπ(s′)
β3

π(s)
, (B.4)

δ̃H
fin,f (s, s′) =

α

π

(1 − z)s
s + 2m2

π

βπ(s′)
βπ(s)

×
[
−1 +

1
βπ(s′)

log
(

1 + βπ(s′)
1 − βπ(s′)

)]
, (B.5)

Bπ(s, s′) =
2α

π

s′βπ(s′)
sβπ(s)

×
[
1 + β2

π(s′)
2βπ(s′)

log
(

1 + βπ(s′)
1 − βπ(s′)

)
− 1
]

, (B.6)

δ̃V+S
fin (s) =

α

π

{
3s − 4m2

π

sβπ
log
(

1 + βπ

1 − βπ

)

− 2 − 2 log
(

1 − β2
π

4

)

− 1 + β2
π

2βπ

[
log
(

1 + βπ

1 − βπ

)[
log
(

1 + βπ

2

)

+ log(βπ)
]

+ log
(

1 + βπ

2βπ

)
log
(

1 − βπ

2βπ

)

+ 2Li2

(
2βπ

1 + βπ

)
+ 2Li2

(
−1 − βπ

2βπ

)

− 2
3
π2
]}

, (B.7)

δ̃V+S
fin,f (s) = δ̃V+S

fin (s) − α

π

1
2βπ

log
(

1 + βπ

1 − βπ

)
. (B.8)

Neglecting soft photon exponentiation, we can write the
observed total cross section as the sum of a soft photon
contribution and a hard photon contribution:

σ
(f)
obs(s) = σ(0)(s)

[
1 + δini(s, Λ) + δ

(f)
fin (s, Λ)

]

+
∫ s−2

√
sΛ

4m2
π

ds′ρini(s, s′)σ(0)(s′)

+ σ(0)(s)
∫ s−2

√
sΛ

4m2
π

ds′ρ(f)
fin(s, s′), (B.9)

where

ρfin(s, s′) =
1
s

[
δ̃H
fin(s, s′) +

Bπ(s, s′)
1 − z

]
, (B.10)

ρf
fin(s, s′) =

1
s

[
δ̃H
fin,f (s, s′) +

Bπ(s, s′)
1 − z

]
, (B.11)

δfin(s, Λ) = log
(

2Λ√
s

)
Bπ(s′ = s) + δ̃V+S

fin (s), (B.12)

δf
fin(s, Λ) = log

(
2Λ√

s

)
Bπ(s′ = s) + δ̃V+S

fin,f (s) .(B.13)

Taking now only the leading order contribution to the
total cross section and the final state corrections into ac-
count leads to the O(α) FSR-inclusive cross section

σ(γ)(,f)(s) = σ(0)(s)

{
1 + δ

(f)
fin (s, Λ)

+
∫ s−2

√
sΛ

4m2
π

ds′ρ(f)
fin(s, s′)

}

= σ(0)(s)
[
1 +

α

π
η(f)(s)

]
. (B.14)
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The analytic O(α) expression for the integrated final state
correction factors read

η(s) =
1 + β2

π

βπ

{
4Li2

(
1 − βπ

1 + βπ

)
+ 2Li2

(
−1 − βπ

1 + βπ

)

− 3 log
(

2
1 + βπ

)
log
(

1 + βπ

1 − βπ

)

− 2 log(βπ) log
(

1 + βπ

1 − βπ

)}

− 3 log
(

4
1 − β2

π

)
− 4 log(βπ) (B.15)

+
1
β3

π

[
5
4
(1 + β2

π)2 − 2
]

log
(

1 + βπ

1 − βπ

)
+

3
2

1 + β2
π

β2
π

for a scalar particle final state and

ηf(s) = η(s)

+
1

s + 2m2
π

1
2sβπ

×
[
(s2 + 2m4

π) log
(

1 + βπ

1 − βπ

)
− sβπ

2
(5s − 2m2

π)
]

+
1

s2β3
π

×
[
4m2

π(s − m2
π) log

(
1 + βπ

1 − βπ

)
− sβπ(s + 2m2

π)
]

− 1
2βπ

log
(

1 + βπ

1 − βπ

)
(B.16)

for a fermionic final state.
Finally some comments on applying kinematic cuts,

leading to a breaking of ISR ⊗ FSR factorization (see Ap-
pendix A). Treating FSR by sQED we can write the spec-
tral function with C-symmetric kinematic cuts as(

dσ

ds′

)
obs,cut

= |F (0)
π (s′)|2

(
dσ

ds′

)point

ini,cut
(B.17)

+ |F (0)
π (s)|2

(
dσ

ds′

)point

fin,cut
+ O(α2),

where (dσ/ds′)point
ini,cut and (dσ/ds′)point

fin,cut are the corres-
ponding IS and FS spectral function for point-like, scalar
particles. Note that within the considered sQED model we
treat the non-perturbative QCD effects (pion form factor)
in a factorized way which means that the FSR corrections
are treated within pure sQED and therefore do not affect
the pion form factor. By some straightforward manipula-
tions we can write the total photon-inclusive cross section
(2.3) for the given cuts in a similar form as in (A.28).

Let us note that sV in (2.3) is a formal integration vari-
able since in σ

(γ)
cut(sV) sV corresponds to the invariant mass

square of the pions including FSR, while in ρcut
ini (s, sV) sV

corresponds to the invariant mass square s′ of the pions
excluding FSR.

The cut quantities are defined as follows:

σ
(0)
cut(s) = |F (0)

π (s)|2σ0,point
cut (s) (B.18)

with

σ0,point
cut (s) = π

α2β3
π cos ΘM

π

2s

(
1 − 1

3
cos2 ΘM

π

)
. (B.19)

Here ΘM
π is the minimal angle between the pion momenta

and the beam axis allowed by the given cuts. Similarly, we
obtain

σ
(γ)
cut(s) = |F (γ)

π (s)|2σ0,point
cut (s) (B.20)

and

ρ
(cut)
ini (s, s′) =

1
σ0,point

(cut) (s′)

(
dσ

ds′

)point

ini,(cut)
,

ρ
(cut)
fin (s, s′) =

1
σ0,point

(cut) (s)

(
dσ

ds′

)point

fin,(cut)
. (B.21)
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Kühn, G. Rodrigo, hep-ph/0212225



278 J. Gluza et al.: Measuring the FSR-inclusive π+π− cross section

16. A.B. Arbuzov, E.A. Kuraev, N.P. Merenkov, L. Trentadue,
JHEP 12, 009 (1998); V.A. Khoze, M.I. Konchatnij, N.P.
Merenkov, G. Pancheri, L. Trentadue, O.N. Shekhovzova,
Eur. Phys. J. C 18, 481 (2001); O.N. Shekhovtzova, Eur.
Phys. J. C 25, 199 (2002)

17. K. Melnikov, Int. J. Mod. Phys. A 16, 4591 (2001)
18. J.F. De Troconiz, F.J. Yndurain, Phys. Rev. D 65, 093001

(2002)

19. K. Hagiwara et al. [Particle Data Group Collaboration],
Phys. Rev. D 66, 010001 (2002)

20. P. Franzini, in The Second Daphne Physics Handbook. Vol.
1, 2, edited by L. Maiani, G. Pancheri, N. Paver, Frascati,
Italy, INFN (1995), 1202 p

21. S. Jadach, B.F. Ward, Z. Was, Phys. Rev. D 63, 113009
(2001)

22. F. James, M. Roos, Comput. Phys. Commun. 10, 343
(1975)


